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Abstract11

The dominant view in neuroscience is that changes in synaptic weights underlie12

learning. It is unclear, however, how the brain is able to determine which synapses13

should change, and by how much. This uncertainty stands in sharp contrast to deep14

learning, where changes in weights are explicitly engineered to optimize performance.15

However, the main tool for that, backpropagation, has two problems. One is neuro-16

science related: it is not biologically plausible. The other is inherent: networks trained17

with this rule tend to forget old tasks when learning new ones. Here we introduce18

the Dendritic Gated Network (DGN), a variant of the Gated Linear Network, which19

offers a biologically plausible alternative to backpropagation. DGNs combine dendritic20

‘gating’ (whereby interneurons target dendrites to shape neuronal responses) with lo-21

cal learning rules to yield provably efficient performance. They are significantly more22

data efficient than conventional artificial networks, and are highly resistant to forget-23

ting. Consequently, they perform well on a variety of tasks, in some cases better than24

backpropagation. Importantly, DGNs have structural and functional similarities to25

the cerebellum, a link that we strengthen by using in vivo two-photon calcium imaging26

to show that single interneurons suppress activity in individual dendritic branches of27

Purkinje cells, a key feature of the model. Thus, DGNs leverage targeted dendritic28

inhibition and local learning – two features ubiquitous in the brain – to achieve fast29

and efficient learning.30
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1 Introduction31

A hallmark of intelligent systems is their ability to learn. Humans, for instance, are32

capable of amazing feats – language acquisition and abstract reasoning being the most33

notable – and even fruit flies can learn simple reward associations [1, 2]. It is widely34

believed that this learning is implemented via synaptic plasticity. But which synapses35

should change in response to, say the appearance of a reward, and by how much?36

This is especially hard to answer in humans, who have about 1014 synapses, but it is37

hard even in fruit flies, which have about 107 – corresponding to 10 million adjustable38

parameters.39

One answer to this question is known: introduce a loss function (a function that40

measures some aspect of performance, with higher performance corresponding to lower41

loss), compute the gradient of the loss with respect to the weights (find the direction42

in weight space that yields the largest improvement in performance), and change the43

weights in that direction. If the weight changes are not too large, this will, on average,44

reduce the loss, and so improve overall performance.45

This approach has been amazingly successful in artificial neural networks, and has46

in fact driven the deep learning revolution [3]. However, the algorithm for computing47

the gradient in deep networks is not directly applicable to biological systems, as first48

pointed out by [4,5] (see also recent reviews [6–8]). There are several reasons for this.49

First, to implement backpropagation [9–11], referred to simply as backprop, neurons50

would need to know their outgoing weights. Second, backprop requires two stages:51

a forward pass (for computation) and a backward pass (for learning). Moreover, in52

the backward pass an error signal must propagate from higher to lower areas, layer53

by layer (Fig. 1A), and during that backward pass information from the forward pass54

must remain in the neurons. However, biological neurons do not know their outgoing55

weights, and there is no evidence for a complicated, time-separated backward pass.56

Backprop also leads to another problem, at least in standard deep learning setups:57

it adapts to the data it has seen most recently, so when learning a new task it forgets58

old ones [12]. This is known as catastrophic forgetting, and prevents networks trained59

with backprop to display the lifelong learning that comes so easily to essentially all60

organisms [13,14].61

Driven in part by the biological implausibility of backprop, there have been several62

proposals for architectures and learning rules that might be relevant to the brain.63

These include feedback alignment [15,16], creative use of dendrites [17,18], multiplexing64

[19], and methods in which the error signal is fed directly to each layer rather than65

propagating backwards from the output layer [20–28]. A particularly promising method66

that falls into the latter category is embodied in Gated Linear Networks [29,30]. These67

networks, which were motivated from a machine learning rather than a neuroscience68

perspective, have obtained state-of-the-art results in regression and denoising [31],69

contextual bandit optimization [32], and transfer learning [33].70

In Gated Linear Networks (GLNs), the goal of every neuron, irrespective of its layer,71

is to predict the target output based on the input from the layer directly below it. This72

is very different from backprop, in which neurons in intermediate layers extract features73

that make it easier for subsequent layers to predict the target (compare Figs. 1A and B).74
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Figure 1: Comparison of multi-layer perceptrons (MLPs) and Dendrtic Gated Networks
(DGNs). In all panels the blue filled circles at the bottom correspond to the input. A.
MLP. Blue arrows show feedforward computations; red arrows show the error propagating
back down. B. DGN. As with MLPs, information propagates up, as again shown by the
blue arrows. However, rather than the error propagating down, each layer receives the
target output, which it uses for learning. Connections from the input to each layer (light
blue arrows) support the gating. C. A single postsynaptic neuron in layer k of a DGN,
along with several presynaptic neurons in layer k − 1. Each branch gets input from all the
presynaptic neurons (although this is not necessary), and those branches are gated on and
off by inhibitory interneurons which receive external input. The white interneuron is active,
so its corresponding branch is gated off, as indicated by the light gray branches; the gray
neurons are not active, so their branches are gated on.

Gated Linear Networks are thus particularly suitable for biologically plausible learning:75

every neuron is essentially part of a shallow network, with no hidden layers, for which76

the delta rule [34] – a rule that depends only on presynaptic and postsynaptic activity77

– is sufficient to learn.78

To implement these local learning rules, the target activity (a scalar) is sent to every79

neuron, in every layer of the network (Fig. 1B, red arrows). This is typical of a large80

class of learning rules [20, 21, 23–27]. Completely atypical, though, is the role of the81

external input. It is used for gating the weights: each neuron has a bank of weights at82

its disposal, and the external input determines which one from that bank is used. For83

example, a neuron might use one set of weights when the visual input contains motion84

cues predominantly to the right; another set of weights when it contains motion cues85

predominantly to the left; and yet another when there are no motion cues at all. (Note86

that this example is over-simplified: in practice the input is high dimensional, and the87

mapping from external input to the chosen set of weights contains very little structure;88

see Fig. 2C.)89

Having a “look-up” table, in which each input corresponds to a particular set of90

weights, is inconsistent with what we see in the brain. However, we can attain the91

performance of Gated Linear networks by gating dendritic branches on and off, using92
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Figure 2: Random mapping (here imple-
mented with so-called half-space gating,
which we use throughout the paper; see
Eq. (3)), shown for two dimensional input
for clarity. (In realistic cases the input is,
of course, high dimensional.) A. Two in-
put neurons (blue) connect to three dendritic
branches, and gate them either on or off.
Each gate divides the two dimensional in-
put into two half-spaces, one of which shuts
down the gate, silencing the corresponding
dendritic branch. B. For the input on this
particular trial (blue dot in bottom square),
the gate g1k,i (red) is off, while g2k,i (teal) and
g3k,i (yellow) are on, as indicated by the three
squares with the corresponding colors. The
top square shows a summary of the possible
combinations of weights. Each of the seven
regions has a different combination, mak-
ing it possible to implement a large range
of input-output mappings. C. A more re-
alistic case of 10 branches. In DGNs, each
coloured region corresponds to a linear com-
bination of 10 sets of weights. This is in
contrast to GLNs, which use a separate set
of weights for each region.
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inhibitory neurons, in an input-dependent manner (Figs 1C and 2). We thus replace93

the weight look-up mechanism of GLNs with linearly additive dendritic weights, and94

refer to these networks as Dendritic Gated Networks (DGNs). Perhaps surprisingly,95

the mapping from the input to the dendritic branches is completely random, so the96

input isn’t chosen to target specific branches (see, for example, Fig. 2C). This stands97

in sharp contrast to architectures where the gating is learned [35]. But the unlearned,98

random mapping is in fact a key ingredient, as it allows DGNs to represent essentially99

arbitrary nonlinear functions efficiently. Moreover, this gating makes DGNs especially100

resistant to forgetting. In particular, when data comes in separate “tasks”, DGNs can101

learn new ones without forgetting the old. Finally, the loss is a convex function of the102

weights for each unit (see Supplementary Information, “Convexity”), as it is in Gated103

Linear Networks [29]. Convexity is an extremely useful feature, as it enables DGNs,104

like the Gated Linear Networks on which they are based, to learn quickly.105

Below we describe multi-layer Dendritic Gated Networks in detail – both the ar-106

chitecture and the learning rule. We then train them on four tasks: two on which107

vanilla feedforward networks trained with backprop typically exhibit catastrophic for-108

getting, and two relevant to the cerebellum. We map the proposed learning rule and109

the associated architecture to the cerebellum because 1) the climbing fibers provide110

a well-defined feedback signal; 2) its input-output function is relatively linear [36–38];111

and 3) molecular layer interneurons could act as gates [39–48]. Finally, we demonstrate112

experimentally that a key prediction of the DGN – suppression of individual dendritic113

branches by interneurons – is observed in cerebellar Purkinje cell spiny branchlets in114

vivo. Thus, our theoretical and experimental results draw a specific link between115

learning in DGNs and the functional architecture of the cerebellum. The generality of116

the DGN architecture should also allow this algorithm to be implemented in a range117

of networks in the mammalian brain, including the neocortex.118

2 Results119

2.1 Dendritic Gated Networks120

Dendritic Gated Networks, like conventional deep networks, are made up of multiple
layers, with the input to each layer consisting of a linear combination of the activity
in the previous layer. Unlike conventional deep networks, however, the weights are
controlled by external input, via gating functions, denoted g(x); those functions are
implemented via dendritic branches (Figs. 1B, C and 2). This results in the following
network equations. The activity (i.e., the instantaneous firing rate) of the ith neuron
in layer k, denoted rk,i, is

rk,i = φ

Bk,i∑
b=1

gbk,i(x)

nk−1∑
j=0

wbk,ijhk−1,j

 , (1)

with the synaptic drive, hk−1,j , given in terms of rk−1,j as

hk−1,j = φ−1
(
rk−1,j

)
. (2)
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Here φ(·) is the activation function (either identity or sigmoid), rk,i is the activity of121

ith neuron in layer k (with rk,0 set to 1 to allow for a bias), Bk,i is the number of122

branches of neuron i in layer k, wbk,ij is the weight from neuron j in layer k − 1 to123

the bth branch of neuron i in layer k, nk is the number of neurons in layer k, and124

gbk,i(x) is the binary gating variable; depending on the external input, x (taken to be125

an n-dimensional vector), it’s either 1 (in which case the bth branch of the ith neuron126

is gated on) or 0 (in which case it’s gated off). There are K layers, so k runs from 1 to127

K. The input to the bottom layer is x – the same as the input to the gating variable.128

The mapping from the input, x, to the gating variable, gbk,i(x), is not learned;
instead, it is pre-specified, and does not change with time. In all of our simulations we
use random half-space gating [29]; that is,

gbk,i(x) =

{
1 if vbk,i · x ≥ θbk,i
0 otherwise

(3)

where vbk,i and θbk,i are sampled randomly and kept fixed throughout learning (see129

Methods), and “·” is the standard dot product.130

Note that a Dendritic Gated Network with one branch reduces to a Gated Linear131

Network. With a caveat: in the original formulation [29], Gated Linear Networks had132

a nonzero weight for each input, x, which is not the case if weights are completely133

gated off for one of the half spaces (because in that case the weights are zero). For134

a detailed description of the difference between GLNs and DGNs, see Supplementary135

Information, “Difference between GLNs and DGNs”.136

In Dendritic Gated Networks, the goal of each neuron is to predict the target output,
denoted r∗ (which is a function of x; we suppress the x-dependence to reduce clutter).
To do that, the weights, wbk,ij , are modified to reduce the loss, `k(r

∗, rk,i). For weight
updates we use gradient descent,

∆wbk,ij = −η
∂`(r∗, rk,i)

∂wbk,ij
(4)

where η is the learning rate, and the updates are performed after each sample. The form
of the loss can influence both the speed of learning and the asymptotic performance,
but conceptually we should just think of it as some distance between r∗ and rk,i. In
the simplest case, which is suitable for regression, φ is the identity (rk,i = hk,i) and the
loss is quadratic,

`(r∗, rk,i) =
1

2
(r∗ − rk,i)2 , (5)

so the update rule is
∆wbk,ij = η gbk,i(x)(r∗ − rk,i)hk−1,j . (6)

This has the form of a gated version of the delta rule [34]. For classification, a different137

loss function is more appropriate. However, the update rule still has the form of a138

gated version of the delta rule; see Methods, Sec. 4.1, for details.139
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2.2 Simulations140

Equations (1) and (3) for the network dynamics and Eq. (4) for learning constitute141

a complete description of our model. For a given problem, we just need to choose a142

target input-output relationship (a mapping from x to r∗) and specify the loss func-143

tions, `(r∗, rk,i). Here we consider four tasks. The first two, designed to illustrate the144

resistance of DGNs to catastrophic forgetting, are classification tasks, for which we145

use a sigmoid activation and cross-entropy loss (Methods, Sec. 4.1); the second two,146

which are relevant to the cerebellum, are regression tasks, for which we use an identity147

activation and quadratic loss, as just described.148

DGNs can mitigate catastrophic forgetting.149

Animals are able to acquire new skills throughout life, seemingly without compromising150

their ability to solve previously learned tasks [13,14]. Standard networks do not share151

this ability: when trained on two tasks in a row, they tend to forget the first one.152

This phenomenon, known as “catastrophic forgetting”, is an old problem [49–51], and153

many algorithms have been developed to address it. These typically fall into two154

categories. The first involves replaying tasks previously seen during training [51–53].155

The second involves explicitly maintaining additional sets of model parameters related156

to previously learned tasks. Examples include freezing a subset of weights [54, 55],157

dynamically adjusting learning rates [56], and augmenting the loss with regularization158

terms with respect to past parameters [57–59]. A limitation of these approaches (aside159

from additional algorithmic and computational complexity) is that they require task160

boundaries to be provided or accurately inferred.161

Unlike contemporary neural networks, the DGN architecture and learning rule is162

naturally robust to catastrophic forgetting without any modifications or knowledge of163

task boundaries (something that has been shown for Gated Linear Networks as well164

[30]). In Fig. 3 we illustrate, on a simple task, the mechanism behind this robustness,165

and show how it differs from a standard multi-layer perceptron; details are given in166

the caption.167

To demonstrate robustness to catastrophic forgetting on a more challenging task,168

we train a DGN on the pixel-permuted MNIST continual learning benchmark [57,60].169

In this benchmark, the network has to learn random permutations of the input pixels,170

with the random permutation changing every 60,000 trials (see Methods for additional171

details). We compare the DGN to a multi layer perceptron (MLP) with and without172

elastic weight consolidation (EWC) [57], the latter a highly-effective method explicitly173

designed to prevent catastrophic forgetting by storing parameters of previously seen174

tasks. Although elastic weight consolidation is effective, it requires a very complicated175

architecture. In addition, it must be supplied with task boundaries, so it receives more176

information than the DGN.177

Because MNIST has 10 digits, we train 10 different DGNs. This could be reduced178

to 4 networks (in general log2 of the number of outputs) by using a more efficient code179

– one in which each network divides the 10 digits into two classes. Alternatively, we180

could use a single DGN where each unit has a 10 dimensional output corresponding to181

the class probabilities. However, this is not biologically plausible, so we did not use it.182
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DGN

Learning onset

Task A Task B

Training

inputs

End of Task A End of Task B

A 50%, B 50%

A 50%, B 50% A 100%, B 46%

A 100%, B 50%

A 91%, B 99%

A 66%, B 100% P(Class 1)

Figure 3: Comparison of the DGN to a standard multi-layer perceptron (MLP) trained with
backprop. Each point on the square has to be classified as “blue” (class 0) or “red” (class
1). We consider a scenario common in the real world (but difficult for standard networks):
the data comes in two separate tasks, as shown in the first row. We trained a 2-layer MLP
(second row) and a 2-layer DGN (third row) on the two tasks. The output of the network is
the probability of each class, as indicated by color; the percentages report the accuracy for
each of the tasks. The MLP uses ReLU activation functions, so each neuron has an effective
gating; the boundaries of those gates are shown in gray. The boundaries move with learning,
and are plotted at the end of training of each of the tasks (white lines). The boundaries of
the DGN do not move, so we plot them only in the first column. After training on Task
A, most of the boundaries in the MLP are aligned at -45 degrees, parallel to the decision
boundaries, which allows the network to perfectly separate the two classes. In the DGN, the
boundaries do not change, but the network also perfectly separates the two classes. However,
after training on Task B, the DGN retains high performance on Task A (91%), while the
MLP’s performance drops to 66%. That’s because many of the boundaries changed to the
orthogonal direction (45 degrees). For the DGN, on the other hand, changes to the network
were much more local, allowing it to retain the memory of the old task (see samples from
Task A overlaid on all panels) while accommodating the new one. The MLP has 50 neurons
in the hidden layer; the DGN has 5 neurons, each with 10 dendritic branches, in the hidden
layer.
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A B

Figure 4: Learning and retention on the permuted MNIST task. The tasks are learned
sequentially in a continual learning setup. A. Performance (on test data) for each of the 10
tasks, where a “task” corresponds to a random permutation of the pixels. B. Performance
on the first task after each of nine new tasks is learned. As discussed in the main text, the
MLP is especially bad at this task. The EWC is much better, to a large extent because it
received extra information: the task boundaries. Even though the DGN was not given that
information, it forgets a factor of two more slowly than the MLP. Error bars in both plots
denote 95% confidence intervals over 20 random seeds.

Each of the 10 networks contains 3 layers, with 100, 20, and 1 neuron per layer, and183

there are 10 dendritic branches per neuron. The targets are categorical (1 if the digit184

is present, 0 if it is not), so we use binary cross-entropy rather than quadratic loss (see185

Methods, Sec. 4.1). We use 1000, 200, and 10 neurons per layer for the MLP (so that186

the number of weights match, approximately, the number weights in the DGN), with187

categorical cross entropy loss, both with and without elastic weight consolidation, and188

optimize the learning rates separately for each network.189

Figure 4 shows the learning and retention performance of the DGN, with the MLP190

and EWC networks included primarily as benchmarks (neither is biologically plausible).191

In Fig. 4A we plot performance on each task for the three networks; as can be seen,192

performance is virtually identical. In Fig. 4B we investigate resistance to forgetting,193

by plotting the performance on the first task as the nine subsequent tasks are learned.194

The EWC network retains its original performance almost perfectly, the MLP forgets195

rapidly, and the DGN is in-between. It is not surprising that the EWC does well, as196

it was tailored to this task, and in particular it was explicitly given task boundaries.197

Somewhat more surprising is the performance of the DGN, which had none of these198

advantages but still forgets much more slowly than the MLP. The DGN also learns new199

tasks more rapidly than either the EWC or MLP networks (Supplementary Figure S3),200

because the loss is convex and learning is local.201

Mapping DGNs to the Cerebellum202

For the next two simulations we consider computations that can be mapped onto203

cerebellar circuitry. We focus on the cerebellum for several reasons: it is highly ex-204
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contextual information peripheral and MDJ inputinstructive output

Figure 5: The cerebellum as a two layer DGN. Contextual information from the mossy
fiber/granule cell (MF/GC) pathway is conveyed as input to the network via parallel fibers
(PFs) that form synapses onto both the dendritic branches of Purkinje cells and molecular
layer interneurons (MLIs). The inhibitory MLIs act as input-dependent gates of Purkinje
cell dendritic branches. Purkinje cells converge onto the cerebellar nuclear neurons (CbNs),
which constitute the output of the cerebellar network. The climbing fibers (CFs, red) orig-
inating in the inferior olive (IO) convey the feedback signal that is used to tune both the
Purkinje cells, based on which inputs are gated on or off, and also the CbNs. Excitatory
and inhibitory connections are depicted as round- and T-ends, respectively. Dashed lines
represent connections not included in the model.

perimentally accessible; its architecture is well characterized; there is a clear feedback205

signal to the Purkinje cells (the cerebellar neurons principally involved in learning); its206

input-output function is relatively linear [36–38]; and molecular layer interneurons play207

a major role in shaping Purkinje cell responses [39–45,47], and can influence climbing208

fiber-mediated dendritic calcium signals in Purkinje cells [46, 48,61].209

Both classic and more modern theoretical studies in the cerebellum have focused210

on the cerebellar cortex, modelling it as a one-layer feedforward network [62–66]. In211

this view, the parallel fibers project to Purkinje cells, and their synaptic weights are212

adjusted under the feedback signal from the climbing fibers. This picture, however, is an213

over-simplification, as Purkinje cells do not directly influence downstream structures.214

Instead, they project to the cerebellar nucleus, which constitutes the output of the215

cerebellum (see Fig. 5). The fact that Purkinje cells form a hidden layer, combined216

with the observed plasticity in the Purkinje cell to cerebellar nucleus synapses [67–71],217

means most learning rules tailored to one-layer networks, including the delta rule,218

cannot be used to train the network.219

We propose instead that the cerebellum acts as a two layer DGN comprised of220

Purkinje cells as the first, hidden layer and the cerebellar nucleus as the second, output221
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layer (Fig. 5). Parallel fibers provide the input to both the input layer (Purkinje cells)222

and the gates, represented by molecular layer interneurons, that control learning in223

individual Purkinje cell dendrites. For the output layer of the DGN (which consists of224

one neuron), we use a non-gated rather than a gated neuron, as the unique biophysical225

features of cerebellar nuclear neurons allow them to integrate inputs approximately226

linearly [72]. The climbing fibers provide the feedback signal to Purkinje cells and227

cerebellar nuclear neurons. In our formulation, climbing fiber feedback signals the228

target, allowing each neuron to compute its own local error by comparing the target229

to its output (rk,i). This formulation is a departure from the strict error-coding role230

that is traditionally attributed to climbing fibers, but is consistent with a growing231

body of evidence that climbing fibers signal a variety of sensorimotor and cognitive232

predictions [73].233

DGNs can learn inverse kinematics234

The cerebellum is thought to implement inverse motor control [74, 75]. We therefore235

applied our proposed DGN network to the SARCOS benchmark [76], which is an236

inverse kinematics dataset from a 7 degree-of-freedom robot arm (Fig. 6). The goal is237

to learn an inverse model, and predict 7 torques given the joint positions, velocities,238

and accelerations for each of the 7 joints (corresponding to a 21 dimensional input).239

The target output, r∗, is the desired torque, given the 21-dimensional input. There240

are seven joints, so we train seven different networks, each with its own target output.241

We use DGN networks with 20 Purkinje cells, and minimize a quadratic loss (5). Since242

this is a relatively hard task, performance depends strongly on the number of branches.243

In Fig. 6 we plot the target torques for each joint (dots) along with the predictions of244

the DGN (lines; chosen for ease of comparison as there is no data between the points)245

for 500 branches. The lines follow the points reasonably closely, even when there are246

large fluctuations, indicating that the DGN is faithfully predicting torques. The per-247

formance of our network (mean squared error on test data in the original torque units)248

is comparable to that of most existing machine learning algorithms (Supplementary249

Table S1) while using fewer samples to learn. In Supplementary Fig. S2 we show the250

equivalent plot for 5, 50 and 5000 branches. Even at 5 branches performance is reason-251

able, while at 5000 we exceed the performance of almost all existing machine learning252

algorithms.253

Vestibulo-ocular reflex, and adaptation to gain changes254

To maintain a stable image on the retina during head movements, when an animal255

moves its head it moves its eyes in the opposite direction. This is known as the256

vestibulo-ocular reflex (VOR), and a key feature of it is that it’s plastic: animals can257

adapt quickly when the relationship between the head movement and visual feedback is258

changed, as occurs as animals grow or are given corrective lenses. VOR gain adaptation259

relies critically on the cerebellum, and has been used to study cerebellar motor learning260

for decades [77–81]. This is an easy task to learn – almost any network, including a261

linear one, can achieve high performance on it. We consider it primarily because it is262

a very common cerebellar task.263
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Figure 6: Sarcos experiment. DGNs can solve a challenging motor control task: predicting
torques from the proprioceptive input. The data comes from a SARCOS dexterous robotic
arm [76], pictured on the left. The inputs are position, velocity and acceleration of the
7 joints (a 21 dimensional variable); the targets are the desired torques (7 dimensional).
Example targets (normalized to keep the training data between 0 and 1) are shown with
dots, the lines are the output of our network. Performance is very good; only rarely is there
a visible difference between the dots and the lines.

We applied our DGN network to the VOR in a regime where the gain occasionally264

changes abruptly. The gain, denoted G, is the ratio of the desired eye velocity to the265

head velocity (multiplied by −1 because the eyes and head move in opposite direction,266

to keep with the convention that the gain is reported as a positive number). When the267

gain is (artificially) changed, at first animals move their eyes at the wrong speed, but268

after about 15 minutes they learn to compensate [79,80].269

We trained our network on a head velocity signal of the form

s(t) = sin(ω1t) + sin(ω2t) , (7)

with ω1 = 13.333 and ω2 = 20.733 (corresponding to 2.12 and 3.30 Hz, respectively).
This signal was chosen to mimic, approximately, the irregular head velocities encoun-
tered in natural viewing conditions. Following Clopath et. al. [82], we assumed that
the Purkinje cells receive delayed versions of this signal. The ith input signal, xi(t),
which arrives via the parallel fibers, is modelled as

xi(t) = s(t− τi) , (8)

with delays, τi, spanning the range 50-300 ms. The cerebellum needs to compute the270

scaled version of the eye velocity: r∗(t) = Gs(t) (as mentioned above, the actual eye271

movement is −r∗(t), but we follow the standard convention). Learning was online, and272

we updated the weights every 500 ms, to approximately match the climbing fiber firing273

rate [83].274

The DGN contained 20 Purkinje cells, with 10 branches each; these project to one275

output neuron (corresponding to the cerebellar nucleus), which was linear and not276

gated. As a baseline, we trained an MLP with the same number of weights (resulting277
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in 200 hidden neurons). We used quadratic loss for both the DGN and the MLP and, as278

in [82], we assumed n = 100 parallel fibers and a single output. Each branch received279

input from all 100 parallel fibers. Gating (Eq. (3)) was controlled by xi(t) (given in280

Eq. (8)), reflecting the parallel fiber influence on molecular layer interneurons (Fig. 5);281

see Methods for details. Given the timescale of the signal (2-3 Hz), any individual282

branch was gated on for about 500 ms at a time. The networks were pre-trained on a283

gain, G, of 1. We implemented four jump changes: first to 0.7, then back to 1.0, then284

to 1.3, and, finally, back to 1.0; in all cases, for 30 minutes at each gain (Fig. 7A).285

Performance for both the DGN and the MLP were comparable and, after suitably286

adjusting the learning rates, the networks were able to learn in 15-20 minutes (Fig. 7A,287

B), consistent with learning times in behavioral experiments [79,80]. Figure 7C shows288

the target and predicted head velocities immediately before and after each gain change.289

Not surprisingly, immediately after a gain change, the network produces output with290

the old gain.291

Figure 7D shows the connection strengths between parallel fibers (xi(t), Eq. (8))292

and Purkinje cells, after learning, as a function of the delay, τi. There are two notable293

features to these plots. First, the connectivity patterns are smooth. Second, although294

the DGN and the MLP solve the task equally well, there is a clear difference: for the295

MLP the connectivity patterns are highly stereotyped, while for the DGN they are far296

less so.297

The smooth connectivity patterns, which are seen in both MLPs and DGNs, arise298

primarily because weights mediating inputs with similar delays have similar updates299

during learning. But there is another, somewhat technical, reason: the weights were300

initialized to small values. That’s important because for most directions in weight301

space, changes in the weights have no effect on the loss. Component of the weights302

that lie in these “null” directions will, therefore, not change with learning. Small initial303

weights ensure that the components in the null directions start small, and the lack of304

learning in these directions means they stay small.305

The difference in the connectivity patterns – stereotyped versus diverse – are due306

to the fact that MLPs are not gated whereas DGNs are. The smooth, stereotyped307

connectivity patterns seen in MLPs arise because all neurons receive similar input308

statistics, and so they find similar solutions. The more diverse connectivity patterns309

seen in DGNs arise because inputs to different branches are gated differently, and so310

different branches do not see the same input statistics.311

What happens when the initial weights are large and initially random? In that case,312

because the weights don’t change in the null directions, the final connectivity patterns313

are also not smooth – they’re almost as noisy as the initial weights. Here as well,314

though, there are difference between DGNs and MLPs: for DGNs the noise rides on315

top of diverse connectivity patterns very similar to those in the top panels of Fig. 7D,316

while for MLPs the noise is unmodulated, and more or less white (see Supplementary317

Fig. S4).318
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Figure 7: VOR adaptation task. We trained the networks on gain G = 1, then changed the
gain every 30 minutes. Results are shown for the Dendritic Gated Network (DGN) and a
multi-layer perceptron (MLP). A. Dashed lines are true gain versus time; blue and purple
lines are gains computed by the DGN and MLP, respectively. For both networks, gains
were inferred almost perfectly after 15-20 minutes. B. Performance, measured as mean
squared error between the true angular velocity, Gs(t) (Eq. (7)), and the angular velocity
inferred by the networks. Same color code as panel A. C. Comparison of target angular
velocity versus time (black) to that predicted by the DGN (blue). (A plot for the MLP is
similar.) Before the gain change, the two are almost identical; immediately after the gain
change, the network uses the previous gain. D. Top panel: Parallel fiber weights for the
DGN network versus delay, τi (Eq. (8)). Each panel shows 10 branches; 5 Purkinje cells are
shown (chosen randomly out of 20). The weights vary smoothly with delay. Bottom panel:
MLP weight profile, except that dendritic branches are replaced by the whole neuron (all
100 parallel fibers). The weights again vary smoothly with delay, but their shapes are now
highly stereotyped.
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2.3 Testing predictions of the DGN in behaving animals.319

A key feature of DGNs is that the gates should exert a local effect on the dendritic320

branches of the principal neurons. When mapped onto the cerebellum, this suggests321

that the molecular layer interneurons (MLIs) should inhibit the individual dendritic322

branches of the Purkinje cells. We therefore tested whether individual Purkinje cell323

dendrites can be inhibited by activity in MLIs. Previous in vitro work has demonstrated324

that synaptic inhibition can locally inhibit calcium signals in Purkinje cell dendrites325

[46], and in vivo work has shown that MLI activity can influence the variability of these326

signals [48, 61], but it has not yet been shown whether such effects can be localized327

to individual dendrites of Purkinje cells, and if so, what the spatial relationship of328

this effect is with presynaptic interneurons. Using multi-plane 2-photon imaging in329

awake PV-cre mice injected with the GCaMP7f virus, we could reliably record calcium330

signals from individual MLI somata and the climbing fiber-evoked calcium signals in331

the dendritic tree of Purkinje cells (Fig. 8A-B). With this approach, we were able332

to identify a substantial proportion of interneurons (72/142 MLIs in 3 mice; 51%)333

whose activation was associated with a significant decrease in climbing-fiber driven334

calcium signals in the dendrites of at least one nearby Purkinje cell(Fig. S5A). Given335

the axonal spread of MLIs [84,85], the analysis was confined to single interneurons that336

were located within 150 um (rostrocaudally) and 50 um (mediolaterally) from a given337

Purkinje cell dendrite. The extent of suppression varied between PC dendrites and also338

within individual PC dendrites recorded at different depths (Fig. 8C). In modulated339

Purkinje cell dendrites, the degree of suppression was 17.4 ± 0.5% (n = 133 Purkinje340

cells in 3 mice [range 6.6 to 53.5%]).341

After identifying Purkinje cells whose global dendritic signals were inhibited when342

nearby MLIs were active, we investigated the spatial extent of this inhibition within343

Purkinje cell dendritic segments. We generated climbing fiber-evoked calcium signal344

maps in Purkinje cell dendrites, both when MLIs were active and when they were345

inactive (Fig. 8D, left). The difference revealed that MLI activation was associated346

with local suppression of calcium signals in subregions of the dendrites (blue region in347

Fig. 8E, left; Fig. S5B-E). To quantify the spatial extent of the suppression, we sub-348

divided Purkinje cell dendritic regions into 1 µm segments to generate spatial activity349

profiles in MLI-active and MLI-inactive conditions (Figs. 8D, right). Subtracting these350

yielded a spatial difference trace (Figs. 8E, right). Aligning these segments across all351

modulated PC dendrites allowed us to determine the average spatial profile of sup-352

pressed dendritic segments (Figs. 8F). To identify false positives, for each Purkinje353

cell dendrite analyzed we generated a shuffled difference trace, where MLI-active and354

MLI-inactive traces were replaced with an equal mixture of the two conditions (odd-355

even event split). We then identified suppressed regions in these shuffled difference356

traces, and used the 95th percentile (4.6 µm) as the minimum length for a segment357

to be considered significantly modulated. Across all experiments, we identified n = 77358

significantly modulated segments (N = 3 mice) whose calcium signals were suppressed359

by 42 ± 2% (mean ± S.E.M.) (Fig. 8G). The spatial extent of MLI-gated inhibition360

in these dendritic segments was 31 ± 3 µm (mean ± S.E.M.), accounting for 35 ± 3%361

(mean ± S.E.M.) of the extent of the dendritic tree at the imaged plane (Fig. 8H-I).362

These results demonstrate that MLIs can locally inhibit climbing fiber signals in the363
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Figure 8: Dendritic gating of Purkinje cells by molecular layer interneurons in vivo.
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Figure 8: A. Multi-plane 2-photon calcium imaging of molecular layer interneurons (red) and
Purkinje cell dendrites (blue). B. Example traces of MLIs (top, active and inactive states
in purple and green) and Purkinje cell dendrites recorded in multiple planes marked a, b,
and c (bottom). C. Two examples of mean climbing fiber-evoked Ca2+ signal, in two planes,
in MLI-active (purple) and inactive (green) states. D. Spatial event-triggered map of area
surrounding Purkinje cell dendrites (contoured region of interest) when a nearby MLI (circle
projected from different plane) was in an active state or inactive state (left). Spatial profile
of event-triggered fluorescence is shown on the right. E. Difference heatmap image (left) and
spatial profile (rainbow trace, right) of event-triggered fluorescence of same dendrite shown
in panel D. Shuffled trace (blue) was computed on a split of odd and even event indices. F.
Mean spatial profile of event-triggered fluorescence in MLI-active and MLI-inactive condtions
(top) and difference traces (bottom) aligned to middle of suppressed segment (black trace,
n = 77 regions from N = 3 recordings in 3 mice). Shuffled trace (blue) was computed,
as above, on an odd-even split. Suppressed regions smaller than the 95th percentile of the
shuffle data (red region, 4.6 µm) were excluded. G. Histogram of strength of suppression
calculated only within modulated segments. H. Histogram of suppressed segment lengths
(red line shows 95th percentile of the shuffle). I. Histogram of suppressed segment lengths
expressed as a percent of total segment length. Data are shown as mean ± S.E.M.

Purkinje cell dendritic tree with a spatial extent that is comparable to the length of364

individual spiny branchlets. This provides strong experimental evidence for a specific365

biological implementation of one of the principal design features of the DGN, namely366

local dendritic suppression of principal units by interneurons.367

3 Discussion368

Identifying the biologically plausible learning rules that mediate the modification of369

connections in neural networks is a key goal of both experimental and theoretical370

neuroscience. Here, we describe a new class of learning rules called Dendritic Gated371

Networks (DGNs). Each unit in each layer of a DGN consists of dendritic branches372

that are gated on and off by interneurons, and all units in all layers receive the same373

feedback learning signal. We show that the DGN has key advantages over existing374

learning algorithms, particularly in terms of learning speed and resilience to forgetting,375

tested across a range of learning tasks. We also show using in vivo experiments that key376

elements of the DGN architecture may be implemented in biological networks. These377

results suggest that DGNs may be widely useful in the machine learning community,378

and also suggest that this learning rule may be implemented in biological networks379

such as the cerebellum and other neural circuits with a similar network architecture.380
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3.1 Comparison of DGNs to other learning algorithms381

The DGN network architecture differs from traditional learning algorithms (e.g. back-382

prop) as well as the algorithm on which it was based (Gated Linear Networks) in383

several important ways. Traditional learning algorithms like backprop map input to384

output in stages, with the input gradually transformed, until eventually, in the output385

layer, the relevant features are easy to extract. There is certainly some evidence for386

this hierarchical strategy being implemented in the brain. It is, for example, much387

harder to extract which face a person is looking at from activity in visual area V1 than388

in fusiform face area [86, 87]. While this strategy for computing is reasonable, it has389

a downside: the relationship between activity in intermediate layers and activity in390

the output layer is highly nontrivial, which makes it especially hard for the brain to391

determine how weights in intermediate layers should change.392

Despite the inherent complexity of this strategy, biologically plausible learning rules393

that implement it have been proposed [15–27]. The DGN algorithm takes a different394

approach from any of these. With this architecture, dendritic branches are gated on395

and off via a random (and fixed) linear transformation of their input. The summed396

activity of these branches forms the prediction of the neuron, which gets adjusted over397

time via a delta rule. Consequently, all neurons predict the same target; and each layer398

improves upon the predictions of the previous layer.399

The DGN also differs from and improves over the algorithm on which it was based400

– the Gated Linear Network (GLN) [29, 30]. In particular, the GLN requires a bank401

of weights for each neuron, with the input choosing which one the neuron should use402

– something that seems extremely difficult for the brain to implement. The DGN,403

however, replaces the library of weights with gated dendritic branches, an innovation404

essential for biological plausibility. Thus, although the DGN is conceptually related to405

the GLN, from the point of view of neuroscience it has a critical new component which406

makes it, unlike the GLN, relevant to the brain.407

3.2 Implementation in cerebellar circuits408

The architecture and exceptional efficiency of learning exhibited by DGNs suggests that409

this algorithm may also be implemented in biological networks. Specifically, several key410

features of the DGN are recapitulated in the functional architecture of the cerebellum.411

First, the cerebellum receives a clear and global feedback signal in the form of the412

climbing fiber input to Purkinje cells and cerebellar nuclear neurons that is the principal413

driver of learning in the cerebellar circuit [88]. Second, the principal neurons of the414

cerebellar cortex, Purkinje cells, exhibit linear encoding of their inputs due to their415

high baseline firing rates and unique biophysical properties [36,89]. Finally, molecular416

layer interneurons, which are known to target dendritic branches of Purkinje cells, are417

likely candidates to mediate branch-specific dendritic inhibition [46,48,90].418

A key prediction of the DGN that would bolster its biological plausibility is that419

interneurons should gate activity in single dendritic branches of principal cells. Here,420

we provide the first in vivo evidence that molecular layer interneurons can produce421

inhibition of dendritic calcium signals on the level of single dendritic branches in Purk-422

inje cells, a longstanding, but until now untested, prediction of anatomical [91–94]423
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and theoretical [63, 90, 95] work. By simultaneously imaging dendritic calcium signals424

in Purkinje cells and activity in neighboring MLIs, we show that MLI activity can425

substantially decrease dendritic calcium signals in Purkinje cells. Previous in vitro426

work has shown that even modest inhibition of dendritic calcium signals (on order of427

20%) can completely abolish cerebellar plasticity [96], suggesting that the suppression428

we observe is capable of abolishing learning. These MLI-driven effects were not dis-429

tributed equally across PC dendritic arbors. Indeed, suppression of dendritic calcium430

signals was often restricted to individual dendritic branches of Purkinje cells, even as431

neighboring regions of the same dendritic arbor were unaffected. The profound local432

suppression of these climbing fiber-driven signals suggest that MLI-driven inhibtion is433

also capable of suppressing parallel fiber-driven input to Pukrinje cells, which are rela-434

tively much weaker [97]. Thus, it is likely that MLIs can gate both input and learning435

to single Purkinje cell dendritic branches. In summary, our demonstration that MLIs436

can modulate the Purkinje cell dendritic calcium signals on the spatial scale of a single437

dendritic spiny branchlet strongly supports the DGN gating prediction. We note that438

the binary on/off gating exhibited by the DGN is challenging to implement biologically;439

far more likely are softer gates, where the amount of gating is a function of the input.440

To determine how soft gates affected DGN performance, we performed simulations441

on the permuted MNIST and inverse kinematics tasks, and the results were virtually442

identical to the ones with on/off gates (data not shown), emphasizing the flexibility443

of DGN implementation in the brain. Our experimental data (together with previous444

work linking cerebellar functional architecture to features of the DGN) provides strong445

support for the idea that a DGN-like algorithm is implemented in cerebellar circuits.446

The architecture of the DGN makes several further predictions about how the DGN447

may map onto the cerebellum. A key prediction that awaits experimental validation448

is that the activity of MLIs should depend predominantly on parallel fiber input and449

the input-output relationship of these interneurons should change very slowly relative450

to the timescale over which Purkinje cells learn, which can be measured in single tri-451

als [98]. Assessing the stability of the parallel fiber-mediated input-output relationship452

of MLIs is difficult because granule cells are known to exhibit learning-related changes453

in activation [99, 100]. Thus, further experiments to determine the stability of paral-454

lel fiber-MLI and parallel fiber-Purkinje simple spike input-output relationships over455

learning will need to account for changes in the firing patterns of cerebellar afferents.456

Another prediction of the DGN is that the parallel fiber connectivity pattern in the457

VOR or similar tasks should carry information about architecture. If parallel fiber-458

Purkinje cell connectivity is smooth and diverse (Fig. 7D, top panels), this supports a459

DGN-like implementation. If, on the other hand, connectivity is smooth and stereo-460

typed (Fig. 7D, bottom panels) or noisy with no other temporal structure (Fig. S4),461

this argues for alternative implementations, such as an MLP. Distinguishing between462

these alternatives experimentally would require recording from populations of individ-463

ual granule cells during VOR learning, then mapping the synaptic strength between464

those same granule cells and Purkinje cells.465
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3.3 DGNs in other neural circuits466

While DGNs exhibit features that make them particularly well-suited for implementa-467

tion in the cerebellum, the general principles of this learning rule may be applicable468

to a variety of brain circuits. In particular, the gating of dendritic signals that we469

demonstrate in Purkinje cells may also be a feature of cortical networks, given the470

branch-specific innervation of interneuron axons that has been documented in many471

cortical circuits [101]. Such generalization would require some modifications to imple-472

ment the algorithm; for instance, the learning rule will have to change because activity473

in the cortex is far from linear.474

3.4 Conclusions475

In summary, Dendritic Gated Networks are strong candidates for biological networks476

– and not just in the cerebellum; they could be used anywhere there is approximately477

feedforward structure. They come with two highly desirable features: rapid, data-478

efficient learning, and biologically plausible learning. Furthermore, they suggest a479

novel role for inhibitory neurons, which is that they are used for gating dendritic480

branches. We anticipate that the strong, experimentally testable, predictions may481

inspire investigations in many brain circuits where rapid learning may invoke a DGN482

algorithm.483

4 Methods484

4.1 Classification tasks485

The network we use in our model is described in Eqs. (1) and (3), and the learning rules486

are given in Eq. (4). For regression (VOR and inverse kinematics), we use the identity487

function for φ (Eq. (1)), and the square loss (Eq. (5)), resulting in the update rule488

given in Eq. (6). For classification (the simple task described in Fig. 3 and permuted489

MNIST), the network computes probabilities, so φ needs to be bounded, and a square490

loss is not appropriate. Here we provide details for this case.491

For classification we use a standard sigmoid function, σ(z) = ez/(1 + ez), albeit
modified slightly,

φ(z) = clip1−εε

(
σ(z)

)
(9)

where clipba(·) clips values between a and b (so the right hand side is zero if σ(z) is492

smaller than ε or larger than 1− ε). Clipping is used for bounding the loss as well as493

the gradients, which helps with numerical stability. It also enables a worst-case regret494

analysis [29,30]. We set ε to 0.01, so neural activity lies between 0.01 and 0.99.495

The square loss is not appropriate in this case, so instead we use the binary cross-496

entropy loss: the loss of neuron i in layer k is given by497

`(r∗, rk,i) = −r∗ log rk,i − (1− r∗) log
(
1− rk,i

)
. (10)
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Consequently, the update rule for the weights, Eq. (4), is (after a small amount of498

algebra)499

∆wbk,ij = ηgbk,i(x)1(ε < rk,i < 1− ε)
(
r∗ − rk,i

)
hk−1,j (11)

where 1(·) is 1 when its argument is true and 0 otherwise. The fact that learning is500

zero when rk,i is outside the range [ε, 1 − ε] follows because dφ(z)/dz = 0 when z is501

outside this range (see Eq. (9)). This ensures that learning saturates when weights502

become too large (either positive or negative). However, this can cause problems if the503

output is very wrong; that is, when r∗ = 1 and rk,i < ε or r∗ = 0 and rk,i > 1− ε. To504

address this, we allow learning in this regime. We can do that compactly by changing505

the learning rule to506

∆wbk,ij = ηgbk,i(x)1(|r∗ − rk,i| > ε)
(
r∗ − rk,i

)
hk−1,j . (12)

Essentially, this rule says: stop learning when rk,i is within ε of r∗.507

For a compact summary of the equations (given as pseudocode), see Supplementary508

Algorithms S1 and S2.509

4.2 Simulations510

Here we provide details of our simulations. Simulations were written using JAX [102],511

the DeepMind JAX Ecosystem [103], and Colab [104].512

Permuted MNIST. We adopt the pixel-permuted MNIST benchmark [57, 60],513

which is a sequence of MNIST digit classification tasks with different pixel permuta-514

tions. Each task consists of 60,000 training images and 10,000 test images; all images515

are deskewed. Models are trained sequentially across 10 tasks, performing a single pass516

over all 60,000 training examples for each of the tasks. We provide the implementation517

details below; the parameters swept during a grid search are given in Supplementary518

Table S2.519

DGN. We use networks composed of 100 and 20 units in the hidden layers and a520

single linear neuron for the output. All neurons in the hidden layers have 10 dendritic521

branches. The output of the network is determined by the last neuron. MNIST has 10522

classes, each corresponding to a digit. Therefore, we use 10 DGN networks, each en-523

coding the probability of a distinct class. These networks are updated during training524

using a learning rate η = 10−2. During testing, the class with the maximum proba-525

bility is chosen. Images are scaled and shifted so that the input range is [−1, 1]. The526

gating vectors, vbk,i, are chosen randomly on the unit sphere, which can be achieved527

by sampling from an isotropic Normal distribution and then dividing by the L2 norm.528

The biases, θbk,i, are drawn independently from a zero mean Gaussian with standard529

deviation 0.05.530

MLP and EWC. We use a ReLu network with 1000 and 200 neurons in the hidden531

layers and 10 linear output units with cross entropy loss. In this setting, the MLP and532
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EWC have the same number of neurons as the DGN, but fewer connections. We use the533

ADAM optimization method [105] with a learning rate η = 10−4 (see Supplementary534

Table S2 for details of the hyperparameter optimization), in conjunction with dropout.535

We use mini-batches of 20 data points. For EWC, we draw 100 samples for computing536

the Fisher matrix diagonals and set the regularization constant to 103.537

Inverse Kinematics. Each DGN network has 20 Purkinje cells and one linear, non-538

gated, output neuron, and we vary the number of branches. We use a quadratic loss,539

as in Eq. (5), a learning rate η = 10−5, and we run for 2000 epochs (2000 passes over540

the dataset). The inputs are centered at 0 and scaled to unit variance per dimension,541

and the targets are scaled so that they lie between 0 and 1. The reported MSEs are542

computed on the test set based on inverse transformed predictions (thus undoing the543

target scaling). The gating parameters are chosen in the same way as for the MNIST544

simulations described above.545

We discovered that the training set of the SARCOS dataset (downloaded from546

http://www.gaussianprocess.org/gpml/data/ on 15 December 2020) includes test547

instances. To the best of our knowledge, other recent studies using the SARCOS548

dataset [106,107] reported results with this549

train/test setting. This means that the reported errors are measures of capacity550

rather than generalization. We compare the performance of DGN against the best551

known SARCOS results in Supplementary Table S1 using the existing train/test split.552

VOR. The gating parameters vbk,ij and θbk,i (Eq. (3)), were drawn independently553

from the standard normal distribution. The learning rates were η = 10−5 for the DGN554

and η = 0.03 for the MLP.555

4.3 Animal experiments556

Animal housing and surgery All animal procedures were approved by the lo-557

cal Animal Welfare and Ethical Review Board and performed under license from the558

UK Home Office in accordance with the Animals (Scientific Procedures) Act 1986559

and generally followed procedures described previously [108]. Briefly, we used PV-Cre560

mice (B6;129P2-Pvalbtm1(cre)Arbr/J) [109] maintained on a C57/BL6 background.561

Mice were group housed before and after surgery and maintained on a 12:12 day-night562

cycle. Surgical procedures were similar to those described in [108], except that we in-563

jected Cre-dependent GCaMP7f (pGP-AAV-CAG-FLEX-jGCaMP7f-WPRE [serotype564

1]; [110]) diluted from its stock titer to a final concentration of 3 x 1011 GC/ml (∼1:25).565

After mice had recovered from surgery, they were acclimated to the recording setup566

and expression-checked before beginning recordings.567

Two-photon calcium imaging data acquisition and processing Imaging568

experiments were performed using a 16x/0.8 NA objective (Nikon) mounted on a Sutter569

MOM microscope equipped with the Resonant Scan Box module. A Ti:Sapphire laser570

tuned to 930 nm (Mai Tai, Spectra Physics) was raster scanned using a resonant571

scanning galvanometer (8 kHz, Cambridge Technologies) and images were collected at572
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512x256 pixel resolution over fields of view of 670x335 µm per plane at an average573

power of 30-70 mW. Volumetric imaging across 5 planes spaced by 10 µm (40 µm574

depth range per recording, total depth ranging 10-70 µm below pial surface) were575

performed using a P-726 PIFOC High-Load Objective Scanner (Physik Instruments)576

at an effective volume rate of 9.7 Hz. The microscope was controlled using ScanImage577

(Version 5.6, Vidrio Technologies) and tilted to 12.5 degrees such that the objective578

was orthogonal to the surface of the brain and coverglass.579

Regions of interest (ROIs) corresponding to single MLI somata and Purkinje cell580

dendrites, which were easily distinguishable based on their shape, were identified using581

Suite2p software [111] for initial source extraction and custom-written software for582

subsequent analyses. Fluorescence time series were computed as (F − F0)/F0 where583

F was the signal measured at each point in time and F0 is the 8th percentile of a584

rolling average baseline surrounding each data point (2000 frames for MLIs and 10585

frames for Purkinje cell dendrites). A neuropil correction coefficient of 0.5 (50 percent586

of neuropil signal output from Suite2p) was applied to MLI ROIs. A range of baseline587

durations and neuropil correction coefficients were tested and varying these parameters588

did not alter the main findings. Following these calculations, fluorescence signals were589

z-scored to facilitate comparisons across neurons. Signals from the same Purkinje cell590

dendrites recorded in multiple planes were identified based on a correlation threshold591

(>0.5, followed by manual confirmation) and analyzed independently for dendritic592

modulation experiments. Event times in dendrites were detected using MLspike [112].593

MLI gating of Purkinje cell dendritic signals For dendritic modulation ex-594

periments, active and inactive MLI states were defined as imaging frames where activity595

in an MLI deviated more than 0.5 standard deviations above or below the mean, re-596

spectively (Fig. S5). Using a higher threshold yielded similar results but resulted in597

fewer dendritic events in each condition. After identifying these states, we compared598

the magnitudes of isolated dendritic events in these two conditions for Purkinje cells599

within a 300×100 µm ellipse centered on each MLI whose major axis is parallel to that600

of Purkinje cell dendrites in the field of view (approximately rostrocaudal). Ellipse di-601

mensions were chosen to approximate the known rostro-caudal and mediolateral spread602

of MLI axons [84,85]. Only isolated events in Purkinje cell dendrites (defined as those603

that occurred more than 500 ms before and after any other events) were analyzed, and604

fluorescence event magnitudes were calculated over the 5 frames (∼500 ms) after each605

event for initial identification of MLI-modulated dendrites. Because analysis of each606

recording involved many thousands of comparisons, we assessed significance differences607

between Purkinje cell dendrite event magnitudes in MLI active and inactive states with608

a significance threshold of 0.05 that was corrected for multiple comparisons using false609

discovery rate threshold of 5% [113].610

Motion-corrected fluorescence movies that were used for pixel-wise analysis of den-611

dritic subregions were pre-processed by first correcting for slow fluctuations in fluores-612

cence, which was done by computing (F −F0)/F0 where F was the signal measured at613

each point in time and F0 is the 8 percentile of a rolling average baseline surrounding614

each data point (2000 frames), and then z-scoring. Purkinje cell dendritic ROIs defined615

in Suite2p were segmented into 1 µm increments by fitting a 4th degree polynomial616
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to each ROI, grouping ROI pixels closest to regular spaced points along this fit line,617

computing a weighted average of these pixels based on the pixel weights assigned by618

Suite2p, and smoothing over 5 µm. Activity profiles in MLI active and inactive states619

were subtracted and used to generate spatial suppression profiles for each Purkinje620

cell dendrite and error bars were generated from the summed variances in active and621

inactive conditions. Shuffled distributions were generated by replacing active and in-622

active conditions with an odd-even event split of each of these groups, yielding two623

distributions comprising of 1/2 MLI-active and 1/2 MLI-inactive events for each den-624

dritic segment. Significantly modulated dendritic segments were defined as the longest625

region for each dendritic segment in which the 95% confidence interval of the difference626

trace was less than zero. To account for false positive dendritic segments that would627

be identified by finding minima in noise, we performed this identification procedure on628

our shuffled data and excluded identified dendritic segments in our real data that were629

smaller than the 95th percentile of these fictive segments (4.6 µm).630

Code availability. We provide pseudo code in Supplementary Algorithms S1 andS2.631

A simple python implementation can be accessed via https://github.com/deepmind/632

deepmind-research/blob/master/gated_linear_networks/colabs/dendritic_gated_633

network.ipynb.634

Data availability. The data that support the findings of this study are available635

from the corresponding authors upon reasonable request. Additional analysis made636

use of standard publicly available benchmarks including MNIST [114] and SARCOS637

(http://www.gaussianprocess.org/gpml/data/).638
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search, 4528–4537 (PMLR, Stockholmsmässan, Stockholm Sweden, 2018). URL810

http://proceedings.mlr.press/v80/schwarz18a.html.811

[60] Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A. & Bengio, Y. An empirical812

investigation of catastrophic forgetting in gradient-based neural networks (2013).813

1312.6211.814
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Supplementary Information952

Difference between GLNs and DGNs953

The main difference between the DGNs and Gated Linear Networks (GLNs) is in the954

interplay of the gating functions and synaptic weights. To understand this, it is helpful955

to write Eq. (1) in the form956

rk,i = φ

nk−1∑
j=0

[Bk,i∑
b=1

gbk,i(x)wbk,ij

]
hk−1,j

 . (13)

957

The term in brackets is the effective weight, which, for each j, consists of a sum over958

branches. The gates, gbk,i, can be either zero or 1; since there are Bk,i of them, there959

are 2Bk,i possible effective weights. For the GLN, on the other hand, rk,i is given by960

rk,i = φ

nk−1∑
j=0

w
β(x)
k,ij hk−1,j

 . (14)

961

The difference between this and Eq. (13) is the the term in brackets has been replaced962

by a single weight, w
β(x)
k,ij . However, the index β(x) can take on 2Bk,i values, so there963

are just as many weights in the GLN as effective weights in the DGN. The value of964

β(x) is determined by the input, and is given by the binary string (suppressing the x965

dependence for clarity)966

β = g1k,i g
2
k,i ... g

Bk,i

k,i . (15)

967

(So if there were 5 gates, and the 3rd and 5th were on while the others were off, the968

term on the right would be 00101, and β would be 5.)969

In our experience, for similar B, DGNs and GLNs perform equally well. Computa-970

tionally, DGNs are more memory efficient, as B weight vectors need to be stored per971

neuron as opposed to 2B for GLNs. However, this comes at the cost of more operations,972

as there is an additional sum over branches (the term in brackets in Eq. (13)).973

The difference in the number of parameters translates to a difference in inductive974

bias. GLNs are less prone to catastrophic forgetting compared to DGNs, as only one975

weight vector per neuron is updated for each input. This, however, means that DGNs976

are better than GLNs at learning new tasks – so long as there is some shared structure.977

Convexity978

Here we show that the loss is convex with respect to the weights in the previous layer.979

Temporarily dropping indices for clarity, the loss, `(r∗, r), is given in terms of the980
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weight vector, w, as `(r∗, r) = `(r∗, φ(h)) with h = c ·w (see Eq. (1)). If `(r∗, φ(h)) is981

convex in h, then ` is also convex in w, since h is a linear function of w.982

For quadratic loss, Eq. (5), φ is the identity, so `(r∗, φ(h))) = 1
2(r∗ − h)2. This is983

obviously convex in h, and so convex in w. For binary cross-entropy loss, Eq. (10),984

φ(h) is given by a clipped sigmoid, Eq. (9). When clipped, φ(h) = 0, which is convex.985

When not clipped, φ(h) = σ(h) = 1/(1 + e−h), for which it is easy to show that986

∂2`(r∗, φ(h)))/∂h2 = σ(h)(1− σ(h)) > 0. Thus, again ` is convex in h, and so also in987

w.988

Optimal number of branches989

The number of dendritic branches is one of the main factors determining the model990

capacity of DGNs. Having too few branches results in underfitting, as the network is991

not flexible enough to learn the underlying function. Having too many branches, on992

the other hand, can result in memorization, and thus overfitting. We have generally993

used 10 branches per neuron except in the Inverse Kinematics experiments, where we994

used up to 5000 branches, as the task measures memorization not generalization.995

In Figure S1, we show the average accuracy in the permuted MNIST task as a func-996

tion of the number of branches. This inverted U-shaped relationship can be observed997

in most tasks (data not shown). In Figure S2, we show how the MSE improves with998

an increased number of branches. Because the training and test data is mixed, over-999

fitting is not possible, and so performance improves monotonically with the number of1000

branches.1001

Learning Retention
A B

Figure S1: Permuted MNIST as a function of the number of DGN branches. A. Test
accuracy at the end of training of each task, averaged over all 10 tasks. B. Test accuracy on
task 1 after training on all 9 permutations. Grey areas are 99.5% confidence intervals of the
results obtained from 10 models, initialised with different gating parameters and trained on
differently permuted data.
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5 branches, MSE=4.1

50 branches, MSE=1.9

5000 branches, MSE=0.0022

1 sec

Figure S2: Sarcos solution for DGNs with 5, 50 and 5000 branches. Learning rate was 10−4

for 5 branches and 10−5 for 50 and 5,000 branches.

Inverse Kinematics1002

In Table S1 we compare the mean square error (MSE) obtained by DGN against1003

baselines obtained from [31, 106, 107]. Note that, as mentioned in Methods, we (like1004

others) used a test set that contained training examples.1005
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Algorithm MSE Epochs

DGN 0.002 2000

Random forest 2.39 -
MLP 2.13 -
Stochastic decision tree 2.11 -
Gradient boosted tree 1.44 -
TabNet-S 1.25 55000
Adaptive neural tree 1.23 -
TabNet-M 0.28 55000
TabNet-L 0.14 55000
Gaussian Gated Linear Network 0.10 2000

Table S1: Test mean square error (MSE) and the number of passes over the dataset (i.e.,
number of epochs) for DGN with 5,000 branches versus previously published methods on the
SARCOS inverse dynamics dataset [76, 106, 107]. DGN obtains the best result, by a factor
of 50.

Catastrophic Forgetting (permuted MNIST)1006

Hyerparameter selection. We used a grid search to select the hyperparameters1007

for the three networks (DGN, MLP and EWC). The parameters we tested are shown1008

in Table S2; the ones that maximize test accuracy are in bold.1009

Model learning rate dropout regularization const
DGN 10−4, 10−3, 10−2, 10−1 – –
MLP 10−6, 10−5, 10−4, 10−3 Yes, No –
EWC 10−6, 10−5, 10−4, 10−3 Yes, No 102, 103, 104

Table S2: For permuted MNIST, parameters swept during grid search. The best parameters
(shown in bold) are the ones that maximize the average test accuracy over 20 random seeds.

Learning curves. In Fig. S3 we show the test performance of previously learned1010

tasks (columns) as a function of the training across multiple tasks. To reduce clutter, a1011

subset of the tasks (1, 2, 4, and 8, out of 10) are shown. The top left plot (train and test1012

on task 1) shows that DGNs learn the first task much faster than all other methods.1013

The plots to the right of that show retention on task 1 while the network is sequentially1014

trained on subsequent tasks. MLP performances drop drastically after learning a few1015

new tasks, while DGN and EWC show little forgetting. This is a remarkable feat for1016

DGNs, which have no access to task boundaries and no explicit memory of previously1017

learned tasks. EWCs, on the other hand, have both. If we look at the four diagonal1018

plots, we see that DGN learns new tasks faster than all other methods, although the1019

difference gets smaller as more tasks are learned.1020
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The final accuracies across the diagonal correspond to the left panel of Fig. 41021

whereas the final accuracies across the first row correspond to the right panel.1022

VOR1023

To obtain the smooth connectivity patterns seen in Fig. 7D, the initial weights had to1024

be small. Larger initial weights produced non-smooth connectivity patterns, although1025

the non-smoothness was different for MLPs than it was for DGNs. For MLPs, standard1026

Glorot intialisation led to the noisy connectivity patterns shown in Fig. S4D, bottom1027

panel; in contrast, to produce smooth patterns, the weights had to be scaled down by1028

a factor of of 100. For DGNs, scaling the initial weights up by a factor of 10 relative to1029

Fig. 7D produced noisy weights, but riding on a smooth background (Fig. S4D, top).1030
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Figure S3: Retention results for permuted MNIST. Models are trained sequentially on 10
tasks, a subset of which is shown (tasks 1, 2, 4 and 8). Each column corresponds to a different
stage of training (see labels on top), and each row reports test accuracy for a specific task.
For example, the top row indicates performance on task 1 after being trained sequentially
on tasks 1, 2, 4 and 8. Each model trains for one epoch per task; i.e., the 60,000 training
examples per task are used only once. Error bars, indicated by the thickness of the lines,
denote 95% confidence levels over 20 random seeds.
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Figure S4: VOR network initialized with large, noisy weights. Same as Fig. 7, except that
the training starts from large, noisy weights. For clarity, only five branches are shown in the
top panel of D (compared to 10 in Fig. 7).
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Figure S5: Suppression of Purkinje cell dendritic segments by MLIs. A. Event-triggered
fluorescence in modulated Purkinje cell dendritic segments as a function of MLI activity level.
Activity levels used for analysis in main figure are highlighted. B. Five additional examples
of spatial event-triggered map of area surrounding Purkinje cell dendrites (contoured region
of interest) when a nearby MLI (white circle; sometimes projected from different plane) was
in an active state or inactive state. C. Spatial profile of event-triggered fluorescence of PC
dendrites shown in panel A. D. Difference heatmap image of event-triggered fluorescence of
same dendrites shown in panels A-B. E. Spatial profile trace (rainbow) and shuffled trace
(blue) of of event-triggered difference heatmap images.
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Pseudocode1031

Algorithm S1 DGN for quadratic loss

1: Input: network architecture: number of layers K ∈ N,
number of neurons in layer k {nk ∈ N},
number of branches per neuron i in layer k {Bk,i ∈ N}

2: Input: weights {wbk,ij ∈ R}
3: Input: gating parameters {vbk,ij ∈ R}, {θbk,i ∈ R}
4: Input: input x = (x1, ..., xn) ∈ Rn

5: Input: target r∗ ∈ R
6: Input: learning rate η ∈ (0, 1)
7: Input: update ∈ {true, false} (enables learning)
8: Output: Target prediction r̂ = rK,1 (output of neuron in last layer K)
9: r0,0 ← 1; n0 ← n; r0,i = xi for i ∈ {1, ..., n}

10: for k ∈ {1, . . . , K} do {over layers}
11: rk,0 ← 1 {bias}
12: for i ∈ {1, . . . , nk} do {over neurons}
13: for b ∈ {1, . . . , Bk,i} do {over branches}
14: gbk,i ← Θ(

∑nk−1

j=0 vbk,ijxj − θbk,i)
15: rk,i ←

∑Bk,i

b=1 g
b
k,i

∑nk−1

j=0 wbk,ijrk−1,j

16: if update then
17: for b ∈ {1, . . . , Bk,i} do {over branches}
18: if gbk,i > 0 then
19: for j ∈ {1, ..., nk−1} do {over neurons in previous layer}
20: wbk,ij ← wbk,ij − η (rk,i − r∗)wbk,ijrk−1,j

21: return rK,1

Here Θ(·) is the Heaviside step function (Θ(z) = 1 for z > 0 and Θ(z) = 0 otherwise).1032
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Algorithm S2 DGN for Bernoulli data

1: Input: network architecture: number of layers K ∈ N,
number of neurons in layer k {nk ∈ N},
number of branches per neuron i in layer k {Bk,i ∈ N}

2: Input: weights {wbk,ij ∈ R}
3: Input: gating parameters {vbk,ij ∈ R}, {θbk,i ∈ R}
4: Input: precision ε ∈ (0, 0.5)
5: Input: input x = (x1, ..., xn) ∈ Rn

6: Input: target r∗ ∈ {0, 1}
7: Input: learning rate η ∈ (0, 1)
8: Input: update ∈ {true, false} (enables learning)
9: Output: Target prediction r̂ = rK,1 (output of neuron in last layer K)

10: r0,0 ← σ(1); n0 ← n; r0,i = clip1−ε
ε (σ(xi)) for i ∈ {1, ..., n}

11: for k ∈ {1, . . . , K} do {over layers}
12: rk,0 ← σ(1) {bias}
13: for j ∈ {1, . . . , nk−1} do {over neurons in layer below}
14: hk−1,j ← σ−1(rk−1,j)
15: for i ∈ {1, . . . , nk} do {over neurons}
16: for b ∈ {1, . . . , Bk,i} do {over branches}
17: gbk,i ← Θ(

∑nk−1

j=0 vbk,ijxj − θbk,i)
18: hk,i ←

∑Bk,i

b=1 g
b
k,i

∑nk−1

j=0 wbk,ijhk−1,j

19: rk,i ← clip1−ε
ε σ(hk,i)

20: if update then
21: for b ∈ {1, . . . , Bk,i} do {over branches}
22: if |r∗ − σ(hk,i)| > ε then
23: for j ∈ {1, ..., nk−1} do {over neurons in previous layer}
24: wbk,ij ← wbk,ij − η(rk,i − r∗)hk−1,j

25: return rK,1

Here, as above, clipba(·) clips values between a and b,1033

clipba(y) ≡


a y < a

y a < y < b .

b b ≤ y
(16)

Also as above, σ(·) is the sigmoid function, σ(z) = ez/(1 + ez). Its inverse is given by1034

σ−1(y) = log(y/(1− y)).1035
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